翻訳と辞書 |
Arithmetical ring : ウィキペディア英語版 | Arithmetical ring In algebra, a commutative ring ''R'' is said to be arithmetical (or arithmetic) if any of the following equivalent conditions holds: # The localization of ''R'' at is a uniserial ring for every maximal ideal of ''R''. # For all ideals , and , #: # For all ideals , and , #: The last two conditions both say that the lattice of all ideals of ''R'' is distributive. An arithmetical domain is the same thing as a Prüfer domain. ==References==
* * *
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Arithmetical ring」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|